Custom Components GalleryNEW
ExploreCustom Components GalleryNEW
ExploreNew to Gradio? Start here: Getting Started
See the Release History
gradio.BarPlot(···)
Creates a bar plot component to display data from a pandas DataFrame (as output). As this component does not accept user input, it is rarely used as an input component.
As input component: (Rarely used) passes the data displayed in the bar plot as an AltairPlotData dataclass, which includes the plot information as a JSON string, as well as the type of plot (in this case, "bar").
Your function should accept one of these types:
def predict(
value: AltairPlotData
)
...
As output component: Expects a pandas DataFrame containing the data to display in the bar plot. The DataFrame should contain at least two columns, one for the x-axis (corresponding to this component's x
argument) and one for the y-axis (corresponding to y
).
Your function should return one of these types:
def predict(···) -> pd.DataFrame | None
...
return value
Parameter | Description |
---|---|
value pd.DataFrame | Callable | None default: None | The pandas dataframe containing the data to display in a scatter plot. If a callable is provided, the function will be called whenever the app loads to set the initial value of the plot. |
x str | None default: None | Column corresponding to the x axis. |
y str | None default: None | Column corresponding to the y axis. |
color str | None default: None | The column to determine the bar color. Must be categorical (discrete values). |
vertical bool default: True | If True, the bars will be displayed vertically. If False, the x and y axis will be switched, displaying the bars horizontally. Default is True. |
group str | None default: None | The column with which to split the overall plot into smaller subplots. |
title str | None default: None | The title to display on top of the chart. |
tooltip list[str] | str | None default: None | The column (or list of columns) to display on the tooltip when a user hovers over a bar. |
x_title str | None default: None | The title given to the x axis. By default, uses the value of the x parameter. |
y_title str | None default: None | The title given to the y axis. By default, uses the value of the y parameter. |
x_label_angle float | None default: None | The angle (in degrees) of the x axis labels. Positive values are clockwise, and negative values are counter-clockwise. |
y_label_angle float | None default: None | The angle (in degrees) of the y axis labels. Positive values are clockwise, and negative values are counter-clockwise. |
color_legend_title str | None default: None | The title given to the color legend. By default, uses the value of color parameter. |
group_title str | None default: None | The label displayed on top of the subplot columns (or rows if vertical=True). Use an empty string to omit. |
color_legend_position Literal[('left', 'right', 'top', 'bottom', 'top-left', 'top-right', 'bottom-left', 'bottom-right', 'none')] | None default: None | The position of the color legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation. |
height int | str | None default: None | The height of the plot, specified in pixels if a number is passed, or in CSS units if a string is passed. |
width int | str | None default: None | The width of the plot, specified in pixels if a number is passed, or in CSS units if a string is passed. |
y_lim list[int] | None default: None | A tuple of list containing the limits for the y-axis, specified as [y_min, y_max]. |
caption str | None default: None | The (optional) caption to display below the plot. |
interactive bool | None default: True | Whether users should be able to interact with the plot by panning or zooming with their mouse or trackpad. |
label str | None default: None | The (optional) label to display on the top left corner of the plot. |
show_label bool | None default: None | Whether the label should be displayed. |
container bool default: True | |
scale int | None default: None | |
min_width int default: 160 | |
every float | None default: None | If |
visible bool default: True | Whether the plot should be visible. |
elem_id str | None default: None | An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. |
elem_classes list[str] | str | None default: None | An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles. |
render bool default: True | If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later. |
sort Literal[('x', 'y', '-x', '-y')] | None default: None | Specifies the sorting axis as either "x", "y", "-x" or "-y". If None, no sorting is applied. |
show_actions_button bool default: False | Whether to show the actions button on the top right corner of the plot. |
Class | Interface String Shortcut | Initialization |
---|---|---|
| "barplot" | Uses default values |
import gradio as gr
import pandas as pd
import random
simple = pd.DataFrame(
{
"a": ["A", "B", "C", "D", "E", "F", "G", "H", "I"],
"b": [28, 55, 43, 91, 81, 53, 19, 87, 52],
}
)
fake_barley = pd.DataFrame(
{
"site": [
random.choice(
[
"University Farm",
"Waseca",
"Morris",
"Crookston",
"Grand Rapids",
"Duluth",
]
)
for _ in range(120)
],
"yield": [random.randint(25, 75) for _ in range(120)],
"variety": [
random.choice(
[
"Manchuria",
"Wisconsin No. 38",
"Glabron",
"No. 457",
"No. 462",
"No. 475",
]
)
for _ in range(120)
],
"year": [
random.choice(
[
"1931",
"1932",
]
)
for _ in range(120)
],
}
)
def bar_plot_fn(display):
if display == "simple":
return gr.BarPlot(
simple,
x="a",
y="b",
title="Simple Bar Plot with made up data",
tooltip=["a", "b"],
y_lim=[20, 100],
)
elif display == "stacked":
return gr.BarPlot(
fake_barley,
x="variety",
y="yield",
color="site",
title="Barley Yield Data",
tooltip=["variety", "site"],
)
elif display == "grouped":
return gr.BarPlot(
fake_barley.astype({"year": str}),
x="year",
y="yield",
color="year",
group="site",
title="Barley Yield by Year and Site",
group_title="",
tooltip=["yield", "site", "year"],
)
elif display == "simple-horizontal":
return gr.BarPlot(
simple,
x="a",
y="b",
x_title="Variable A",
y_title="Variable B",
title="Simple Bar Plot with made up data",
tooltip=["a", "b"],
vertical=False,
y_lim=[20, 100],
)
elif display == "stacked-horizontal":
return gr.BarPlot(
fake_barley,
x="variety",
y="yield",
color="site",
title="Barley Yield Data",
vertical=False,
tooltip=["variety", "site"],
)
elif display == "grouped-horizontal":
return gr.BarPlot(
fake_barley.astype({"year": str}),
x="year",
y="yield",
color="year",
group="site",
title="Barley Yield by Year and Site",
group_title="",
tooltip=["yield", "site", "year"],
vertical=False,
)
with gr.Blocks() as bar_plot:
with gr.Row():
with gr.Column():
display = gr.Dropdown(
choices=[
"simple",
"stacked",
"grouped",
"simple-horizontal",
"stacked-horizontal",
"grouped-horizontal",
],
value="simple",
label="Type of Bar Plot",
)
with gr.Column():
plot = gr.BarPlot()
display.change(bar_plot_fn, inputs=display, outputs=plot)
bar_plot.load(fn=bar_plot_fn, inputs=display, outputs=plot)
bar_plot.launch()
Event listeners allow you to capture and respond to user interactions with the UI components you've defined in a Gradio Blocks app. When a user interacts with an element, such as changing a slider value or uploading an image, a function is called.
The BarPlot component supports the following event listeners. Each event listener takes the same parameters, which are listed in the Event Arguments table below.
Listener | Description |
---|---|
| Triggered when the value of the Plot changes either because of user input (e.g. a user types in a textbox) OR because of a function update (e.g. an image receives a value from the output of an event trigger). See |
| This listener is triggered when the user clears the Plot using the X button for the component. |
Parameter | Description |
---|---|
fn Callable | None | Literal['decorator'] default: "decorator" | the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component. |
inputs Component | list[Component] | set[Component] | None default: None | List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list. |
outputs Component | list[Component] | None default: None | List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list. |
api_name str | None | Literal[False] default: None | defines how the endpoint appears in the API docs. Can be a string, None, or False. If set to a string, the endpoint will be exposed in the API docs with the given name. If None (default), the name of the function will be used as the API endpoint. If False, the endpoint will not be exposed in the API docs and downstream apps (including those that |
scroll_to_output bool default: False | If True, will scroll to output component on completion |
show_progress Literal[('full', 'minimal', 'hidden')] default: "full" | If True, will show progress animation while pending |
queue bool | None default: None | If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app. |
batch bool default: False | If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length |
max_batch_size int default: 4 | Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True) |
preprocess bool default: True | If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the |
postprocess bool default: True | If False, will not run postprocessing of component data before returning 'fn' output to the browser. |
cancels dict[str, Any] | list[dict[str, Any]] | None default: None | A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish. |
every float | None default: None | Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. |
trigger_mode Literal[('once', 'multiple', 'always_last')] | None default: None | If "once" (default for all events except |
js str | None default: None | Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components. |
concurrency_limit int | None | Literal['default'] default: "default" | If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the |
concurrency_id str | None default: None | If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit. |
show_api bool default: True | whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps to use this event. If fn is None, show_api will automatically be set to False. |